skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Dou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Coastal upwelling systems play a key role in sustaining productive coastal ecosystems in the global ocean by transporting nutrients to surface waters. However, the fundamental mechanisms and pathways responsible for nutrient upwelling are not fully understood, largely due to the historically employed two-dimensional frameworks in which coastal upwelling systems have long been studied. Using both observations and idealized numerical simulations, we identify and quantify two primary routes of nutrient upwelling: the residual circulation, resulting from a significant cancellation between Eulerian-mean and eddy-induced circulations, and along-isopycnal eddy stirring. Our analysis demonstrates that their relative contributions depend on two distinct parameters: 1) the slope Burger number S, defined here as S=αN/f, whereαis the topographic slope angle and Nandfare the buoyancy and Coriolis frequencies, and 2) the surface nutrient uptake rate by biological activities. Specifically, we propose that wind forcing induces isopycnal tilting and surface outcropping, which creates favorable conditions for along-isopycnal nutrient gradients to develop in regions of strong biological activity at the surface. The magnitude of these gradients depends on both the slope Burger number S, which influences the strength of the residual circulation bringing nutrients from depths, and the surface biological uptake rate, which consumes nutrients. Our diagnostics provide insights into the intricate pathways for nutrient upwelling and underscore the significance of eddy stirring in coastal upwelling systems. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026